CYCLOPENTANOIDS FROM PHENOL. PART III.¹ SYNTHESIS OF CHIRAL 4-E;DROXYCYCLOPENT-2-ENONES M. Gill and **R.W.** Rickards* Research School of Chemistry, Australian National University, Canberra, A.C.T. 2600 Australia

 $\frac{\text{Summary}}{\text{String}}$ Chiral 4-hydroxycyclopent-2-enones (1 and 2), of which the (<u>R</u>)-enantiomers are important intermediates in prostanoid synthesis, are readily prepared in optically pure form from phenol via reduction of the corresponding 3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enones (5 and 3).

Derivatives of $(\underline{\mathrm{R}})$ -4-hydroxycyclopent-2-enone (1; R=H) are important intermediates in several efficient syntheses of prostanoids. Conjugate addition of the potential β -chain, followed by reaction of the resulting enolate with suitable electrophiles to introduce the eventual a-chain, leads to prostanoids in which the three substituents on the cyclopentanone ring have the same absolute configuration as in natural prostaglandins.² The enantiomeric $(S)-4-hydroxycyclopent-2-enone (2; R=H)$ is a key chiral intermediate in a synthesis of the "eastern zone" of maytansine.³

(R)-4-Hydroxycyclopent-2-enone has been prepared previously in optically pure form as its acetate (1; R=Ac) only by chemical modification of the fungal metabolite terrein.⁴ The same ($\underline{\texttt{R}}$)-enantiomer (1; R=H) resulted in 85% optical purity by synthesis from the $\frac{1}{2}$ common (2S,3S)- or (-)-enantiomer of tartaric acid," and in up to 90% enantiomer excess but low overall yield from combined microbiological and chemical transformation of $3,5$ -diacetoxycyclopent-1-ene. ⁶ The opposite (S)-4-hydroxycyclopent-2-enone (2; R=H) resulted in 86% optical purity from (2<u>R</u>,3<u>R</u>)- or (+)-tartaric acid, 5 and in low enantiomer excess and overall yield from 3,5-diacetoxycyclopent-1-ene.⁶

We describe here convenient, efficient preparations of the optically pure (R)- and - (S)-enantiomers (1) and (2) respectively of 4-hydroxycyclopent-2-enone, in both free (R=H) $\,$ and derivatised ($R = SiBu$ ^tMe₂ or Ac) forms.

The conversion of phenol or 2,4,6-trichlorophenol in five steps into optically pure (S)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (3), itself a versatile prostanoid synthon, 7 has recently been described.⁷ In this conversion, chirality is introduced in the second step by resolution with brucine of the racemic ring contraction product $(1R^*, 4R^*)$ -3,5,5-trichloro-1,4-dihydroxycyclopent-2-ene-1-carboxylic acid.^{1,8} The (l $\underline{\texttt{R}}, \overline{\texttt{4R}}$)-enantiomer (4) of this acid is then oxidatively decarboxylated, partial

1539

dechlorinated, and derivatised to afford the (S)-cyclopentenone (3). The enantiomeric (R)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (5) {an oil, $\lambda_{\tt max}$ (hexane) 221 nm $(\epsilon \ 14,100); \quad [\theta]_{225}^{25}$ + 83,800 (c 1.58 x 10⁻³, hexane), $[\theta]_{333}^{25}$ - 6,770 (c 3.15 x 10⁻², hexane); <code>i.r.</code> and 'H <code>n.m.r.</code> as reported' for the <code>(S)-enantiomer</code> (3)} is available optically pure in similar fashion from the opposite (15,4S)-enantiomer (6) of the ring-contracted acid. ' d. This (15,45)-acid (6) $\{\text{m.p. } 188-189^\circ\}$; $\left[\alpha\right]_D^{2.5} + 207^\circ$ (c 0.11, EtOH);
 25 + 76, 300 (c 4, 93 x 10⁻³); EtOW) is doningdoff on the none soluble buncit $[6]_{219}^{22}$ + 76,300 (c 4.93 x 10 3 , EtOH)} is derived from the more soluble brucine salt $\{\mathfrak{m},\mathfrak{p},$ 149-152°; $\begin{bmatrix} \alpha \end{bmatrix}_{\mathsf{D}}^{\mathsf{S}}$ + 93° (c 0.265, CHCl₃) which is obtained pure in 74% yield from the resolution by fractional recrystallisation from ethanol

Both zinc-copper (in THF-H₂O)¹⁰ and zinc-silver (in MeOH)¹¹ couples reduces 3-chlorocyclohex-2-enones efficiently to cyclohex-2-enones. The reduction of racemic 3-chloro-4-tbutyldimethylsilyloxycyclopent-2-enone (3 + 5) with a zinc-copper couple in aqueous tetrahydrofuran was very slow (< 20% reduction in 24 h). However, the use of methanol as solvent (2 ml per 0.5 mmol substrate) and a large excess of couple (600 mg per 0.5 mmol substrate; 5 min, room temperature) gave an 82% yield of racemic 4-t-butyldimethylsilyloxycyclopent-2-enone $(1 + 2; R=SiBu^tMe_2)$ {m.p. 25-27°; ¹H n.m.r. identical with enantiomer (1; $R = Sibu^{t}$ Me₂) }. The product was purified by preparative layer chromatography on silica gel (CH₂C1₂-MeOH, 20:1) and crystallisation from pentane (-78°) . Similarly, reduction of the racemate $(3 + 5)$ (0.5 mmol) in methanol (2 m1) with zinc-silver couple (700 mg) ; 5-10 min, room temperature) yielded the same product $(1 + 2; R=SiBu^{t}Me_2)$ in 94% yield.

Reduction of chiral (R)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (5) with zinc-silver couple gave (R) -4-t-butyldimethylsilyloxycyclopent-2-enone (1; R=SiBu^tMe₂) (94%) {needles, m.p. 30-31°, from pentane at -78°; $[\alpha]_D^{22} + 67^\circ$ (c 1.17 x 10⁻¹, MeOH); $[6]_{217}^{25}$ + 77,800 (c 1.17 x 10⁻³, MeOH), $[6]_{317}^{25}$ - 10,700 (c 1.17 x 10⁻², MeOH); ¹H n.m.r. (CDC13) 6 0.12 (6H, s, SiMe), **0.92** (9H, s, But), 2.23 (lH, dd, J 18.2 and 2.2 Hz, H-5a), - 2.71 (1H, dd, J 18.2 and 5.9 Hz, H-58), 4.98 (lH, dddd, J 5.9, 2.2, 2.2, and 1.3 Hz, H-4), 6.16 (1H, dd, J 5.6 and 1.3 Hz, H-2), 7.43 (1H, dd, J 5.6 and 2.2 Hz, H-3) }.

Hydrolysis (HOAc-H₂O-THF, 3:1:1; 25°, 48 h) of the silyl ether (1; $k=SiBu^tMe₂$) afforded (R)-4-hydroxycyclopent-2-enone (1; R=H) (91%) {an oil; $\left[\alpha\right]_D^{22}$ + 96° (c 1.18 x 10 $^{-1}$, MeOH), $[\alpha]_D^{22}$ + 81° (c 1.035 x 10⁻¹, CHC1₃); $[\theta]_{215}^{23}$ + 68,000 (c 1.12 x 10⁻³, MeOH), $[6]_{317}^{23}$ – 7990 (c 1.12 x 10⁻², MeOH); ¹H n.m.r. (CDC1₃) 6 2.25 (1H, dd, <u>J</u> 18.4 and 2.3 Hz, H-5 α), 2.77 (1H, dd, \underline{J} 18.4 and 5.9 Hz, H-5 β), 3.5 (1H, bs, OH), 4.98 (1H, m, H-4), 6.20 (1H, dd, J 5.6 and 1.2 Hz, H-2), 7.59 (1H, dd, \underline{J} 5.6 and 2.3 Hz, H-3), in agreement with literature spectra^{5,6}}. Ogura et aI^5 predicted $\lbrack a \rbrack$ _D ca. + 81° (CHCl₃) for the optically pure alcohol (1; R=H). Acetylation (Ac₂O-NaOAc, THF, 65°, 16 h) of this (R)-4-hydroxycyclopent-2-enone (1; R=H) gave (R)-4-acetoxycyclopent-2-enone (1; **R=Ac) (86%)** ib.p. 45"/0.05 mm - (bath temp.); $[\alpha]_D^{22} + 97^{\circ}$ (c 1.03 x 10⁻¹, MeOH); $[\theta]_{208}^{25}$ $\left[\begin{smallmatrix}\theta\end{smallmatrix}\right]_{320}$ $[\alpha]_{\alpha}^{2}$ + 97° (c 1.03 x 10⁻¹, MeOH); $[\theta]_{20.9}^{22}$ + 80,000 (c 1.03 x 10⁻³, MeOH), - 5965 (c 1.03 x 10⁻², MeOH); $[\phi]_{221}^{23}$ + 42,000° (c 1.03 x 10⁻³, MeOH); (c 1.03 x 10 2 , MeOH); $\left\lfloor \frac{1}{2} \ln \ln \pi$.r. as reported $\left\lfloor \frac{1}{2} \right\rfloor$. $[\phi]_{7.6}^{29}$ - 1930° The (R)-acetate (1; R=Ac) derived from terrein showed [α] $_{D}^{2}$ + 95° (c 0.061, MeOH), [ϕ] $_{220}^{2}$ + 40,000° and [ϕ] $_{350}^{2}$ - 1900° (c 0.062, MeOH). 4

The preparation of these (\underline{R}) -4-substituted cyclopentenones $(1; R=SiBu^tMe_2)$, (1; R=H), and (1; R=Ac) by Tanaka et $a1^6$ were considered to contain 90% excess of (R)-enantiomer, but showed $\lbrack \alpha \rbrack_{D}^{\infty}$ (MeOH) values of + 53°, + 59°, and + 82° respectively, which may indicate lower optical or chemical purities.

Reduction of the enantiomeric (S) -3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (3) with zinc-copper couple in methanol gave (S)-4-t-butyldimethylsilyloxycyclopent-2-enone (2; R=SiBu~Me₂) (91%) {needles, m.p. 29-31°, from pentane at -78°; $(c_5.01 \times 10^{-2})$, MeOH); $[0]^2$ $\left[\alpha\right]_{0}^{++}$ - 66° **-** 80,600 (**c** 1.00 **x** 10⁻³, MeOH), $[\theta]_{317}^{22}$ + 10,100 (c 5.01 x 10 2 , MeOH); $^{-1}$ H n.m.r. identical with the enantiomer (1; R=SiBu Me₂)}.

The present conversion of (lS,4S)-3,5,5-trichloro-l,4-dihydroxycyclopent-2-ene-l- carboxylic acid (6) into (R) -4-hydroxycyclopent-2-enone $(1; R=H)$ and its t-butyldimethylsilyl ether (1; R=SiBu^tMe₂) complements our previous conversion⁷ of the (1R,4R)-acid (4) into (S)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (3). Both enantiomers of the acid resulting from alkaline chlorination of phenol now provide useful prostanoid intermediates.

Acknowledgement

We thank Mr A.J. Herlt for skilful technical assistance throughout this work.

REFERENCES AND NOTES

- 1. Part II, R.M. Christie, R.W. Rickards, K.J. Schmalzl, and D. Taylor, Aust. J. Chem., 30, 2195 (1977).
- 2. T. Tanaka, S. Kurozumi, T. Toru, M. Kobayashi, S. Miura, and S. Ishimoto, Tetrahedron, 33, 1105 (1977). For the conversion of the racemate $(1 + 2; R=H)$ into racemic prostanoids, see G. Stork and M. Isobe, J. Am. Chem. Soc., 97, 6260 (1975); M.J. Loots and J. Schwartz, Tetrahedron Lett., 4381 (1978); J.W. Patterson and J.H. Fried, U.S. Pat., 3,847,962 (1974), cf. Chem. Abstr., 82, 86120s (1975); U.S. Pat., 3,872,139 (1975), cf. Chem. Abstr., 83, 131204f (1975).
- 3. M. Samson, P. De Clercq, H. De Wilde, and M. Vandewalle, Tetrahedron Lett., 3195 (1977).
- 4. L.A. Mitscher, G.W. Clark, and P.B. Hudson, Tetrahedron Lett., 2553 (1978).
- 5. K. Ogura, M. Yamashita, and G. Tsuchihashi, Tetrahedron Lett., 759 (1976).
- 6. T. Tanaka, S. Kurozumi, T. Toru, S. Miura, M. Kobayashi, and S. Ishimoto, Tetrahedron, 32, 1713 (1976).
- 7. M. Gill and R.W. Rickards, J. Chem. Sot. Chem. Commun., in press.
- 8. A.W. Burgstahler, T.B. Lewis, and M.O. Abdel-Rahman, <u>J. Org. Chem., 31</u>, 3516 (1966); C.J. Moye and S. Sternhell, Aust. J. Chem., 19, 2107 (1966).
- 9. Satisfactory elemental analyses and spectroscopic data have been obtained for all compounds described in this communication.
- 10. R.M. Blankenship, K.A. Burdett, and J.S. Swenton, <u>J. Org. Chem</u>., <u>39</u>, 2300 (1974).
- 11. R.D. Clark and C.H. Heathcock, J. Org. Chem., 38, 3658 (1973).

(Received in UK **27** February **1979)**