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Summary Chiral 4-hydroxycyclopent-2-enones (1 and 2)) of which the (R)-enantiomers are _ 

important intermediates in prostanoid synthesis, are readily prepared in optically pure 

form from phenol via reduction of the corresponding 3-chloro-4-t-butyldimethylsilyloxy- 

cyclopent-2-enones (5 and 3). 

Derivatives of (R)-4-hydroxycyclopent-2-enone (1; R=H) are important intermediates in - 

several efficient syntheses of prostanoids. Conjugate addition of the potential B-chain, 

followed by reaction of the resulting enolate with suitable electrophiles to introduce the 

eventual a-chain, leads to prostanoids in which the three substituents on the cyclopentanone 

ring have the same absolute configuration as in natural prostaglandins. 2 
The enantiomeric 

(S_)-4-hydroxycyclopent-2-enone (2; R=H) is a key chiral intermediate in a synthesis of the 

“eastern zone” of maytansine. 3 

(lJ)-4-Hydroxycyclopent-2-enone has been prepared previously in optically pure form 

as its acetate (1; R=Ac) only by chemical modification of the fungal metabolite terrein. 4 

The same (R)-enantiomer (1; R=H) resulted in 85% optical purity by synthesis from the _ 

less common (22,3S)- or (-) -enantiomer of tartaric acid,5 and in up to 90% enantiomeric - 

excess but low overall yield from combined microbiological and chemical transformation of 

3,5-diacetoxycyclopent-1-ene. 6 The opposite (z)-4-hydroxycyclopent-2-enone (2; R=H) 

resulted in 86% optical purity from (2&,3R)- or (+)-tartaric acid, 5 
and in low enantiomeric - 

excess and overall yield from 3,5-diacetoxycyclopent-1-ene. 6 

We describe here convenient, efficient preparations of the optically pure (R)- and 
- 

(S)-enantiomers (1) and (2) respectively of 4-hydroxycyclopent-2-enone, in both free (R=H) - 

and derivatised (R=SiButMe2 or AC) forms. 

The conversion of phenol or 2,4,6-trichlorophenol in five steps into optically pure 

(S)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (3), itself a versatile prostanoid 

synthon, 7 has recently been described.’ In this conversion, chirality is introduced in the 

second step by resolution with brucine of the racemic ring contraction product 

(lR*,48)-3,5,5-trichloro-l,4-dihydroxycyclopent-2-ene-l-carboxylic acid.1’8 The 

(1&,4R)-enantiomer (4) of this acid is then oxidatively decarboxylated, partially _ 
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dechlorinated, and derivatised to afford the (z)-cyclopentenone (3). The enantiomeric 

(~)-3-chloro-4-t-butyldimethylsilyloxycyclopent-Z-enone (5) (an oil, Amax (hexane) 221 nm 

(E 14,100); & 25 + 83,800 (c 1.58 x 10m3, hexane), [e],,, - 6,770 (c 3.15 x 10P2, _ - 

hexane); i.r. and lH n.m.r. as reported7 for the (z)-enantiomer (3)) is available optically 

pure in similar fashion from the opposite (15,4S)-enantiomer (6) of the ring-contracted 

acid. ' 
25 

This (15,45)-acid (6) 1m.p. 188-189'; -bl:, + 207' (2 0.11, EtOH); 

[eJ2,9 
+ 76,300 (c 4.93 x 10-3, - EtOH)} is derived from the more soluble brucine salt 

tm.p. 149-152'; [a]: + 93' (2 0.265, CHCl$} which is obtained pure in 74': yield from the 

resolution by fractional recrystallisation from ethanol 

(6) 

Both zinc-copper (in THF-H,O)l' and zinc-silver (in MeOH)ll couples reduces J-chloro- 

cyclohex-2-enones efficiently to cyclohex-2-enones. The reduction of racemic 3-chloro-4-t- 

butyldimethylsilyloxycyclopent-2-enone (3 + 5) with a zinc-copper couple in aqueous 

tetrahydrofuran was very slow (< 20% reduction in 24 h). However, the use of methanol as 

solvent (2 ml per 0.5 mm01 substrate) and a large excess of couple (600 mg per 0.5 mm01 

substrate; 5 min, room temperature) gave an 82% yield of racemic 4-t-butyldimethylsilyl- 

oxycyclopent-2-enone (1 + 2; R=SiButMe2) {m.p. 25-27'; 'H n.m.r. identical with enantiomer 

(1; R=SiButMe2)}. The product was purified by preparative layer chromatography on silica 

gel (CH2C12-MeOH, 2O:l) and crystallisation from pentane (-78'). Similarly, reduction of 

the racemate (3 + 5) (0.5 mmol) in methanol (2 ml) with zinc-silver couple (700 mg; 

S-10 min, room temperature) yielded the same product (1 + 2; R=SiBukz) in 94% yield. 
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Reduction of chiral (R)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (5) with - 

zinc-silver couple gave (R)-4-t-butyldimethylsilyloxycyclopent-2-enone (1; R=SiButMe2) - 

(94%) {needles, m.p. 30-31°, from pentane at -78'; [a] 
22 
D 

+ 67' (5 1.17 x 10-l, MeOH); 
25 25 

[e]217 + 77,800 (c 1.17 x 10m3, MeOH), [e],,, - 10,700 (2 1.17 x lo-', MeOH); 'H n.m.r. - 

(CDC13) 6 0.12 (6H, s, SiMe), 0.92 (9H, s, But), 2.23 (lH, dd, J 18.2 and 2.2 Hz, H-5a), - 

2.71 (lH, dd, J 18.2 and 5.9 Hz, H-58), 4.98 (:H, dddd, J 5.9, 2.2, 2.2, and 1.3 Hz, H-4), - - 

6.16 (lH, dd, J 5.6 and 1.3 Hz, H-2), 7.43 (IH, dd, J 5.6 and 2.2 Hz, H-3)). - - 

Hydrolysis (HOAc-HzO-THF, 3:l:l; 25', 48 h) of the silyl ether (1; .(=SiButMe2) 
22 

afforded (R)-4-hydroxycyclopent-2-enone (1; R=H) (91%) (an oil; [a], + 96' (c 1.18 x lo-', 

MeOH), [cx]: + 81' (2 1.035 x 10-l, CHC13); rel;;5 + 68,000 (c 1.12 x 10m3, MeOH), - 

[el::7 - - 7990 (c 1.12 x lo-', MeOH); 'H n.m.r. (CDC13) 6 2.25 (lH, dd, J 18.4 and 2.3 Hz, 

H-Se), 2.77 (lH, dd, J 18.4 and 5.9 Hz, H-58), 3.5 (lH, bs, OH), 4.98 (lH, m, H-4), 6.20 _ 

(lH, dd, J 5.6 and 1.2 Hz, H-2), 7.59 (lH, dd, J 5.6 and 2.3 Hz, H-3), in agreement with 

literature spectra 5'6}. Ogura et al5 predicted [elD ca. + 81' (CHC13) for the optically -- 

pure alcohol (1; R=H). Acetylation (AczO-NaOAc, THF, 65', 16 h) of this (R)-4-hydroxycyclo- - 

pent-2-enone (1; R=H) gave (R)-4-acetoxycyclopent-2-enone (1; R=Ac) (86%) ib.p. 45"/0.05 mm - 

(bath temp.); 
25 

Lel;;o 

[a]? + 97" (2 1.03 x 10-1;5MeOH); [e],,, + 80,000 (5 1.03 x 10e3, MeOH), 

- 5965 (c 1.03 x lo-', MeOH); _ [$]221 + 42,OOO'(c 1.03 x 10e3, MeOH); _ 

(2 1.03 x 10e2, MeOH); 'H n.m.r. as reported41. 

[$I;:, - 1930° 

The (R)-acetate (1; R=Ac) derived from _ 

terrein showed [a]: 

MeOH). 

+ 95' (5 0.061, MeOH), [$]22o 27 + 40,000' and [$]::, - 1900' (c 0.062, - 

The preparation of these (R)-4-substituted cyclopentenones (1; R=SiButMe2), - 

(1; R=H), and (1; R=Ac) by Tanaka et al6 were considered to contain 90% excess of -- 

(R)-enantiomer, but showed [a], 2o (MeOH) values of + 53', + 59O, - and + 82' respectively, 

which may indicate lower optical or chemical purities. 

Reduction of the enantiomeric (S)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone _ 

(3) with zinc-copper couple in methanol gave (S)-4-t-butyldimethylsilyloxycyclopent-2-enone - 

(2; R=SiButMe2) (91%) {needles, m.p. 29-31°, from pentane at -78'; 

(2 5.01 x 10m2, MeOH); [e]z;7 

[a];' - 66O 

- 80,600 (C 1.00 x iob3, M~OH), [e]i:7 + 10,100 _ 

(c 5.01 x lo-*, MeOH); - 'H n.m.r. identical with the enantiomer (1; R=SiButMe2)). 

The present conversion of (lS,4S)-3,5,5-trichloro-l,4-dihydroxycyclopent-2-ene-l- - 

carboxylic acid (6) into (&)-4-hydroxycyclopent-2-enone (1; R=H) and its t-butyldimethylsilyl 

ether (1; R=SiButMe2) complements our previous conversion7 of the (1!,4R)-acid (4) into - 

(S)-3-chloro-4-t-butyldimethylsilyloxycyclopent-2-enone (3). Both enantiomers of the acid 

resulting from alkaline chlorination of phenol now provide useful prostanoid intermediates. 

We thank Mr A.J. Herlt for skilful technical assistance throughout this work. 
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